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Three-dimensional velocity distributions of a turbulent flow in the core region of
a square duct at ReH = 1.2 × 105 are measured using holographic particle image
velocimetry (HPIV). Spatial filtering of the 136 × 130 × 128 velocity vector maps
enables calculation of subgrid-scale (SGS) stresses and parameters based on the fil-
tered velocity gradients, such as the filtered strain-rate tensor and vorticity vector.
Probability density functions (p.d.f.) of scalar parameters characterizing eigenvalue
structures confirm that the most probable strain-rate topology is axisymmetric exten-
sion, and show that the most probable SGS stress state is axisymmetric contraction.
Conditional sampling shows that high positive SGS dissipation occurs preferentially
in regions with these preferred strain-rate and stress topologies. High negative SGS
dissipation (backscatter) occurs preferentially in regions of axisymmetric contracting
SGS stress topology, but is not associated with any particular strain-rate topology.
The nonlinear model produces the same trends but tends to overpredict the likelihood
of the preferred stress state.

Joint p.d.f.s of relative angles are used to investigate the alignments of the SGS
stress eigenvectors relative to the vorticity and eigenvectors associated with eddy vis-
cosity and similarity/nonlinear models. The results show that the most extensive SGS
stress eigenvector is preferentially aligned at 32◦ to the most contracting strain-rate
eigenvector. This alignment trend persists, with some variations in angle and peak
probability, during conditional samplings based on the SGS dissipation rate, vorticity
and strain-rate magnitudes. The relative alignment of the other two stress and strain-
rate eigenvectors has a bimodal behaviour with the most contracting and intermediate
stress eigenvectors ‘switching places’: from being aligned at 32◦ to the most extensive
strain-rate eigenvector to being parallel to the intermediate strain-rate eigenvector.
Conditional sampling shows that one of the alignment configurations occurs prefer-
entially in regions of high vorticity magnitude, whereas the other one dominates in
regions where the filtered strain-rate tensor has axisymmetric contracting topology.
Analysis of DNS data for isotropic turbulence at lower Re shows similar trends.

Conversely, the measured stress eigenvectors are preferentially aligned with those
of the nonlinear model. This alignment persists in various regions of the flow (high
vorticity, specific flow topologies, etc). Furthermore, the alignment between the strain-
rate and nonlinear model tensors also exhibits a bimodal behaviour, but the alignment
angle of both configurations is 42◦. Implications of alignment trends on SGS dissi-
pation are explored and conditions for high backscatter are identified based on the
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orientation of the stress eigenvectors. Several dynamical and kinematical arguments
are presented that may explain some of the observed preferred alignments among
tensors. These arguments motivate further analysis of the mixed model, which shows
good alignment properties owing to the dominance of the Leonard stress on the
alignments. Nevertheless, the data also show that the mixed model produces some
unrealistic features in probability distributions of SGS dissipation, and unphysical
eigenvector alignments in selected subregions of the flow.

1. Introduction
Turbulence inherently spans a wide range of length scales, from the large, energy

containing ones down to small, viscous dissipation scales. Turbulence is also inherently
three-dimensional. The goal of the present work is to characterize important features
of the three-dimensional structure of interactions among different scales in turbulence,
using holographic particle image velocimetry (HPIV). The interactions between large
and small scales are of particular relevance to large eddy simulation (LES). For recent
reviews of LES, see e.g. Lesieur & Métais (1996), Piomelli (1999), and Meneveau &
Katz (2000). In LES, the small scales are represented by the SGS stress tensor τij ,
defined as

τij = ũiuj − ũiũj , (1.1)

where the tilde denotes spatial filtering at scale ∆. The stress tensor τij must be
modelled in terms of the resolved variables. The model may involve, among others,
parameters of the large-scale velocity gradient tensor such as the filtered vorticity
vector (ω̃i) and the filtered strain-rate tensor (S̃ij), defined as, respectively:

ω̃i = εijk∂ũk/∂xj, (1.2)

S̃ij = 1
2
(∂ũi/∂xj + ∂ũj/∂xi). (1.3)

Direct numerical simulation (DNS) has provided valuable information about tur-
bulent flow phenomena, and played an important role in the development of improved
turbulence models (see e.g. Moin & Mahesh 1998). A limitation of DNS is that all
scales of the flow must be properly resolved and as a result, it is limited to low
Reynolds numbers, at least for the foreseeable future. Consequently, experimental
data are essential if flows at high Reynolds numbers are to be used for development
of physics-based models.

1.1. Background on PIV-based experimental studies of
some simple subgrid-scale models

In recent years, we have studied fundamental properties of subgrid-scale (SGS)
stresses and tested models using two-dimensional PIV data (Liu, Meneveau & Katz
1994, 1995; Liu, Katz & Meneveau 1999; Meneveau & Katz 1999a). These analyses
have provided considerable insight into the dynamics of SGS stresses in isotropic and
rapidly strained turbulence. Planar PIV data were also used in Bastiaans, Rindt &
van Steenhoven (1998) for SGS analysis of a plume. However, two-dimensional PIV
measurements inherently provide only partial data (e.g. only three of the six tensor
components) on the stress and filtered strain-rate distributions. In several instances
during these studies it has become evident that understanding the relationships
between filtered vorticity, strain-rate and stress tensors requires three-dimensional
data on the flow structure. Consequently, we have developed and implemented a
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holographic PIV system (Zhang, Tao & Katz 1997; Tao, Katz & Meneveau 1999a)
to measure the three-dimensional velocity distributions over a finite volume at a
high spatial resolution. Such data enables us to systematically examine the structural
characteristics and alignment of the SGS stress and strain-rate tensors, the vorticity
distribution, SGS dissipation and other related parameters.

On employing a priori testing (Piomelli, Moin & Ferziger 1988), it has been
repeatedly observed that the Smagorinsky model,

τsij = −2(cs∆)2|S̃|S̃ij , (1.4)

exhibits very little correlation with the real stress, τij (see e.g. Liu et al. 1994), resulting
in a low correlation coefficient, ρ(τsij , τij). In contrast, the scale similarity model

τsimij = Csim(ũiũj − ũi ũj), (1.5)

where the overbar denotes a second filtering at a scale ∆′ > ∆, and the nonlinear
model

τnlij = Cnl∆
2(∂ũi/∂xk)(∂ũj/∂xk), (1.6)

perform significantly better in predicting the SGS stresses (Leonard 1974; Bardina,
Ferziger & Reynolds 1980; Liu et al. 1994; Borue & Orszag 1998).

The rate at which kinetic energy is transferred from the resolved to the subgrid
motions is described by the SGS dissipation Π(x, t) = −τij S̃ ij (Piomelli et al. 1991).
To provide adequate SGS dissipation and to ensure stability for application of the
similarity or nonlinear model in LES, Bardina et al. (1980) and Liu et al. (1994)
propose a mixed model consisting of a similarity or nonlinear term and an eddy
viscosity term:

τmixij = Cnl∆
2(∂ũi/∂xk)(∂ũj/∂xk)− 2(cs∆)2|S̃|S̃ij . (1.7)

With proper coefficients to match the mean dissipation, this model has been shown
to perform well in a variety of flow configurations (see e.g. Meneveau & Katz 2000
for an overview of the growing number of applications). However, model coefficients
based on the energy dissipation fail to predict the correct magnitude of the stresses.
Furthermore, use of correlation coefficients to examine the SGS models does not
provide complete information about tensor geometrical relationships, nor does it
account for potential large differences in magnitudes between the real and modelled
stresses. Therefore, in order to improve our understanding of the relationships between
the subgrid and resolved scales, in this paper we will focus instead on the structural
and alignment properties of the SGS stress tensor. Employing recently obtained
holographic PIV measurements (Tao, Katz & Meneveau 2000), we compute the SGS
stress tensors and parameters involving the filtered velocity gradient tensor, such
as the vorticity and the strain-rate. We then examine the eigenvalue structures and
eigenvector alignments of these tensorial parameters relative to each other using a
geometrically invariant analysis. The results provide insight into some of the significant
structural and alignment features of SGS stresses and provide a basis for further SGS
model improvement.

1.2. Background on statistical geometry of tensors and vectors in turbulence

The three-dimensional alignments between vectors and tensor eigenvectors are impor-
tant characteristics and manifestations of the dynamics of turbulent flows. They have
been the focus of several recent studies. For instance, considerable attention has been
given to determining the geometrical relationship between the vorticity vector and the
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eigenvectors of the strain-rate tensor. DNS of isotropic and shear turbulence (Ashurst
et al. 1987; Vincent & Meneguzzi 1994, etc.), and hot-wire measurements of grid-
generated turbulence (Tsinober, Kit & Dracos 1992), have shown that the vorticity
vector is preferentially aligned with the eigenvector corresponding to the intermediate
eigenvalue of the strain-rate tensor, especially in strongly dissipative regions.

Other important parameters include the relative magnitudes of eigenvalues of
tensors, giving information about the relative importance of particular eigenvectors.
While examining the probability of strain states using DNS data, Lund & Rogers
(1994) propose the following strain state parameter to characterize the deformation
of a fluid element:

s∗ = −3
√

6αsβsγs/(α
2
s + β2

s + γ2
s )

3/2, (1.8)

where αs, βs and γs are the eigenvalues of the strain-rate tensor, ordered such that
αs > βs > γs. For incompressible flow αs + βs + γs = 0 and consequently s∗ is bounded
by ±1. In addition, the p.d.f. of s∗ is uniform for a Gaussian random velocity field.
The term s∗ can be interpreted as a direct measure of the ‘shape’ of the deformations
caused by the strain-rate tensor. For example, axisymmetric extension occurs when
s∗ = 1, plane shear occurs when s∗ = 0, and axisymmetric contraction occurs when
s∗ = −1. Lund & Rogers (1994) show that the most probable strain-state in isotropic
turbulence is axisymmetric extension, and that this configuration is particularly well
correlated with regions of high dissipation.

From our recent study on the scale and geometry relationships in the filtered
turbulence (Tao et al. 1999a, 2000), the following characteristics have been observed:
(i) In agreement with trends of unfiltered turbulence observed by Ashurst et al.
(1987), Vincent & Meneguzzi (1994) and Tsinober et al. (1992), there is a preferential
alignment between the filtered vorticity and the intermediate eigenvector of the filtered
strain-rate tensor. This trend can be explained in the context of restricted Euler
dynamics considered in Cantwell (1992) for unfiltered turbulence, and in Chertkov,
Pumir & Shraiman (1999) for inertial-range scales. (ii) The vorticity is most probably
perpendicular to the most extensive SGS stress eigenvector. (iii) In agreement with
Lund & Rogers (1994), the most probable fluid element deformation is axisymmetric
extension. (iv) The most probable angle between the eigenvectors of the most extensive
stress and the most contracting filtered strain-rate is about 34◦, in contrast to typical
eddy viscosity models. Our initial impression (Tao et al. 2000), which was based on
fewer data and less sophisticated analysis, was that the orientations of the other
two stress eigenvectors (intermediate and most contracting) were structureless and
random. However, as the present paper shows, statistically significant trends can be
identified in these other directions as well.

Based on the newly expanded HPIV database, the present paper substantially ex-
tends our original analysis by examining the structure of the SGS stress tensor as well
as its alignment relative to the filtered strain-rate tensor and the tensor defined by the
nonlinear model (1.6). To study the eigenvalue structure of the stress tensor, we intro-
duce a ‘stress state parameter’, s∗τ , (which is analogous to s∗), for the deviatoric part
of τij . To properly characterize the relative orientation of the SGS stress tensor with
the filtered strain-rate tensor and the nonlinear model, we introduce the joint p.d.f.
of three angles between corresponding eigenvectors. Furthermore, through condi-
tional sampling, we examine the effects of strain-rate magnitude, vorticity magnitude,
dissipation and strain and stress state parameters on the alignment trends.

Conditional sampling has been proved to be an effective method for isolating
particular features of the turbulent flow in a statistically meaningful fashion (Adrian
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1990; O’Neil & Meneveau 1997; Meneveau & Katz 1999a; Porté-Agel et al. 2000).
Such an approach is central to the idea of SGS modelling that has to rely on relating
τij to spatially localized properties of the resolved scales. For example, we may
suspect that high strain rate and/or high vorticity affect the spatial alignment trends
and magnitude of the SGS stress tensor. Therefore, it is of interest to isolate regions of
large straining and high vorticity which are identified, respectively, by large values of
|S̃| = (2S̃ij S̃ij)

1/2 and |ω̃|. As will be demonstrated in this paper, these parameters do
affect the alignment and structure of SGS stresses. Conditional sampling based on s∗,
s∗τ and Π also provides useful information on the relationships between the local flow
and stress structures. Conditional sampling is also used in optimal formulations of
LES (Langford & Moser 1999) and renormalization group theories (McComb & Watt
1990). Connections between such statistical formulations and the geometric alignment
trends studied in the present paper have not yet been explored. Knowledge about
eigenvector alignment trends is also important for a new class of models recently
proposed by Domaradzki & Saiki (1997), Scotti & Meneveau (1999), and Misra &
Pullin (1997).

The experimental set-up and optical instrumentation as well as general flow char-
acterization are described in § 2. Section 3 examines the eigenvalue structures of the
filtered strain-rate, SGS stress and modelled stress tensors, as well as their impact on
the dissipation by conditional sampling based on Π . Using joint p.d.f.s, § 4 describes
the tensor alignment of the SGS stress relative to the filtered strain-rate tensor and the
nonlinear model. In § 5, conditional sampling based on Π , |S̃|, s∗τ , s∗ and |ω̃| is used
to highlight the effects of these parameters on the tensor alignments reported in § 4.
A summary and a discussion of the present results are presented in § 6. Specifically,
we address effects of the mean flow on the observed alignment trends as well as the
impact of the structure and relative alignment between stress and strain-rate tensors
on the SGS dissipation. We also explain some of the observed alignment trends using
dynamical and kinematical arguments. The paper concludes with ideas for future
data analysis.

2. Experimental set-up and general flow characterization
2.1. Facility

A schematic description of the closed-loop, test facility is presented in figure 1(a). The
water flow is driven by a 1.5 kW pump and the velocity measurements are performed
within a vertical, square duct with a width, H , of 57.15 mm. Neutrally buoyant (specific
weight 1.05), 20 µm diameter polystyrene tracer particles are seeded at a concentration
of about 4 ∼ 8 mm−3. The test section is located 36H downstream of the duct inlet,
where conditions close to a fully developed turbulent flow are established. The walls of
the test section are made of flush-mounted glass windows, allowing an unobstructed
view of a 57.25× 57.25× 45 mm3 volume. The centreline mean velocity ūc is 2.1 m s−1

and the Reynolds number, based on H and ūc, ReH = 1.2× 105. Since the wall stress
was not measured directly, we estimate the friction factor from Prandtl’s friction law
for turbulent pipe flows (see. e.g. Schlichting 1979), and obtain a friction velocity of
uτ ≈ 0.083 m s−1 and a friction velocity Reynolds number of Reτ = uτ(

1
2
H)/ν ≈ 2360.

Consequently, the y+ = 1 location is at y = ν/uτ ≈ 0.012 mm.

2.2. Instrumentation

This paper provides only a brief description of our HPIV system. Further details
on the image acquisition and subsequent data analysis procedures can be found in
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Figure 1. Schematic of experimental set-up. (a) Test facility for velocity measurement of a turbulent
duct flow. 1, optical windows; 2, square channel; 3, entrance; 4, pipe line; 5, filter; 6, valves;
7, pump; 8, tank; 9, pressure head reservoir; 10, optical table. (b) Optical set-up for recording two
doubly-exposed, off-axis holograms. The duct axis is normal to the page. Forward scattering and
optical high-pass filters are used to improve the signal-to-noise ratio of the particle images. B, beam
splitter; BC, beam collimator; HF, high-pass filter; L, lens; M, mirror; R, relay lens. (c) Hologram
reconstruction and image acquisition system. F, neutral density filter; M, mirror; R, relay lens;
S & C, Spatial filter and collimator.



Statistical geometry of subgrid-scale stresses 41

10

20

30

40

0
10

20
30

40

0

10

20

30

40
z (

m
m

)
x (mm)

y (mm)

0.5 m s–1

Figure 2. A sample three-dimensional, instantaneous velocity distribution in a turbulent duct flow
measured by HPIV. The mean flow is along the x-axis, which is also indicated by the reference
vector at the top of the figure. The centreline mean velocity, ūc, has been subtracted from each
velocity vector.

Zhang et al. (1997). A schematic layout of the optical set-up for recording holograms
is shown in figure 1(b). Two perpendicular, double exposure holograms delayed by
60 µs are recorded simultaneously. Each hologram is used to determine the two
velocity components that are normal to the optical axis. After completing the analysis
(see below) the two data sets are combined to form the three-dimensional velocity
field. The holograms are developed and then reconstructed using the set-up shown
in figure 1(c). Each reconstructed three-dimensional image is scanned with a video-
microscope mounted on an automated three-axis stage, digitized at a resolution of
4.9 µm pixel−1, enhanced, and compressed without loss of detail. In-house developed
software (Roth & Katz 2001) is used for computing the velocity. However, the
autocorrelation function is computed directly from the compressed data, a procedure
that enables us to improve the computation speed, and maintain high magnification
without paying the penalty for a large database (Tao, Malkiel & Katz 1999b). The
interrogation window size is 192 × 192 pixel2 (0.93 × 0.93 mm2). With 65% overlap
between windows, each data set contains 136 × 130 × 128 vectors with a spacing of
δ = 0.33 mm between them. A sample vector map is presented in figure 2. The total
size of an average data cube is 46.5× 45.1× 44.5 mm3 and the distance from the duct
walls to the data cube boundaries is about 5.6 mm, i.e. about 460 wall units.

The typical displacement between two exposures of tracer particles close to the
centre of the duct is about 126µm (26 pixels). Using a conservative estimate for the



42 B. Tao, J. Katz and C. Meneveau

0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.7 0.6 0.5 0.4 0.3 0.2 0.1 0

30

25

20

15

10
500 1000 1500 2000 2500

(c)

(b)(a)

0.2

0.4

0.6

0 0.2 0.4 0.6

0.975

0.950

0.925

0.900
0.875

0.850

0.800

0.975
0.95

0.925

0.9

0.875

0.85
0.83

z+

u(
z,

 y
=

0)
/u

s

y/
1 2
H

z/12H

u/us = 2.5 ln z+ + 5.0

z/
1 2
D

y/12D

Figure 3. (a) A contour plot of the ensemble-averaged axial velocity, ū(y, z)/ūc. Data is averaged in
the streamwise direction, over the four quadrants of the cross section, and over the nine realizations.
The origin is located at the centre of the duct and only a combined quadrant is shown. (b) A mean
axial velocity distribution measured by LDV from Melling & Whitelaw (1976), at ReD = 4.2× 104

and x/D = 37 [reproduced with permission from Cambridge University Press]. Here, D is the
hydraulic diameter of a rectangular duct (41 × 40 mm2), and ū(y, z) is normalized by the bulk
velocity. (c) Mean axial velocity profile in wall units, evaluated from (a) along the z-direction at
y = 0. Here z+ increases towards the duct centre.

measurement uncertainty (twice the standard deviation of the difference between
real and measured displacement, see Roth, Hart & Katz 1995), the experimental
uncertainty for the velocity is estimated at 0.4 pixels, i.e. less than 2%. Consequently,
the characteristic uncertainty for the filtered velocity gradients is estimated at 15%.
Nine such instantaneous velocity fields, recorded with large delays between them (i.e.
statistically independent samples), have been analysed. The results presented in this
paper are based on the data from all nine distributions.

2.3. Data analysis procedure and basic flow characterization

2.3.1. General flow characterization

The mean axial velocity distribution, ū(y, z), normalized by ūc, the centreline mean
velocity, is presented in figure 3(a) as contours of iso-velocity lines. It is averaged along
the mean flow direction and over four quadrants of the duct cross-section, in addition
to ensemble averaging over the nine instantaneous vector maps. Even though the
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large-scale turbulence is not statistically converged with so few data sets, a fair degree
of symmetry is observed. Furthermore, the influence of the secondary flow is evident
from the bulging of iso-velocity lines towards the duct corner. This distribution is
compared and appears to be qualitatively similar to the LDV measurements of Melling
& Whitelaw (1976) at a slightly lower Reynolds number (figure 3b). Figure 3(c) shows
the mean velocity profile in wall units, evaluated along the z-direction at y = 0 from
the contour map of figure 3(a). It is evident that present data are essentially confined
to the wake region of the duct flow. Recall that the logarithmic layer normally
extends to about 10–20% of the distance to the centreline, which in the present case
corresponds to a distance up to z ≈ 0.2( 1

2
H) (or z+ ≈ 500).

Because the data are not statistically converged for the large scales of turbulence,
the r.m.s. distributions of u′, v′ and w′ are patchy, and are not presented here. Still,
the distribution of v′ and w′, the r.m.s. values of velocity fluctuations normal to the
mean flow, are fairly uniform, varying between 3.5% and 5% of ūc for most of the
duct cross-section, with slightly higher values in the perimeter. The values of u′ are
higher, in general, in a significant portion of the duct, exceeding 8.5% of ūc in regions
close to the boundaries. In the central portion of the duct, for example the central
5× 5 mm2, u′ drops to about the same level as that of v′ and w′. Thus, for the central
portion of the duct, the fluctuating velocities appear to be fairly isotropic, at least in
magnitude. These turbulence intensities are comparable to the measurements reported
by Melling & Whitelaw (1976).

One-dimensional turbulence spectra are computed along the mean flow direction
(x) and are shown in figure 4. They are computed by subtracting the mean velocities
from the three velocity components along the x-direction, de-trending the data by
creating a series of first-order derivatives, applying a Welch windowing function,
before performing the fast Fourier transformation. For the purpose of examining
the data, the results are averaged in the y- and z-directions over the more isotropic
central 5 × 5 mm2 area. When k1 > 400 rad m−1, all the three spectra coalesce. At
k1 > 1300 rad m−1, they appear to have, at least in part, a − 5

3
slope, even though

this range spans less than half a decade. For k1 > 4000 rad m−1, the slope of the
spectra increases, indicating that the present data extend into the dissipative range.
The spectra level off towards the very end of the high wavenumber range (k1 >
6700 rad m−1), where they are obscured by the measurement noise, a phenomenon
commonly encountered in PIV data (Liu et al. 1994, 1999; Eggeles et al. 1994).

Using these data, we obtain the Taylor micro-scale Reynolds number, Reλ = u′λ/ν,
to be about 260. It is estimated from λ ≈ u′(15ν/ε)1/2 ≈ (15νl/u′)1/2 ≈ 3.3 mm, where
u′ is the estimated r.m.s. value of the streamwise velocity fluctuations (≈ 0.08 m s−1)
along the duct centreline and l is the integral scale, estimated as l ≈ H . Estimating
the Kolmogorov scale, η, from η ≈ (ν3l/u′3)1/4, we obtain η ≈ 100 µm. Notice that
the integral scale used here is only an order of magnitude estimate. As will be shown
later, the resulting estimate for the dissipation rate, ε ≈ u′3/l ≈ 9.0× 10−3 m2 s−3, is of
the same order of magnitude as (but lower than) the SGS dissipation rate calculated
directly from the data.

2.3.2. The filtered turbulence

Three-dimensional spatial filtering of the velocity field is performed according to

ũi(x) =

∫ ∞
−∞

∫ ∞
−∞

∫ ∞
−∞
ui(x

′)F∆(x− x′)d3x′,

F∆(x) =

{
∆−3 when |x| 6 1

2
∆

0 when |x| > 1
2
∆,

 (2.1)
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Figure 4. One-dimensional (streamwise) turbulent spectra. Data are calculated over the central
portion of the duct (5 × 5 mm2) and also averaged over the nine instantaneous realizations. The
highlighted wavenumber corresponds to the scale of the spatial filter used in the subsequent analyses.

where F∆(x) is a spatial, low-pass box filter with scale ∆. In the present work, we
choose ∆ equal to 10 vector spacings, i.e. ∆ = 10δ = 3.3 mm. As indicated in figure 4,
this value corresponds to a wavenumber inside the limited inertial range of the
turbulence spectra. The skewness and kurtosis of the streamwise derivative of filtered
velocity are, S∆ ≈ −0.36 and K∆ ≈ 3.8. The value of S∆ is consistent with results
of Cerutti, Meneveau & Knio (2000) who obtained S∆ between −0.4 and −0.3 (as
opposed to −0.5 for unfiltered turbulence).

The subgrid-scale stress, τij , is computed according to its definition (1.1), and Sij and
ω̃i are computed directly from filtered velocity derivatives using second-order finite
difference ((1.2) and (1.3)). To be consistent with simulations, as recommended in Liu
et al. (1994), we calculate the derivatives on a grid of size ∆ instead of the original
velocity grid. After the local quantities, such as S̃ij , are computed, the reference point
for the coarse mesh (scale ∆) is shifted by δ (δ = 330 µm) of the finer measurement
grid in order to enlarge the database and obtain improved statistics. In order to
evaluate the modelled SGS stress using the similarity model (1.5), the velocity field
has to be filtered again at a scale 2∆. The parameters of this twice-filtered velocity
field are calculated by using only the resulting coarse grid with vector spacing of 2∆,
similar to the procedures performed at ∆. All the relevant statistics are calculated for
each grid point sampled with proper offset from the data boundaries.

Figure 5(a) shows the p.d.f. of Π , |S̃|, |ω|, and |τ |(= τdijτ
d
ij)

1/2, and τdij = τij−τkkδij/3)
obtained from the nine instantaneous velocity distributions. Note that the p.d.f. of Π
has the typical negative tail indicating energy backscatter (see for example, Meneveau
& Katz 1999a). However, the asymmetry of the curve leads to a positive mean SGS
dissipation, Πmean = 2.46×10−2 m2 s−3. This value is larger than, but of the same order
of magnitude as, ε (≈ 9.0×10−3 m2 s−3), the energy dissipation rate estimated in § 2.3.1.
The p.d.f. of |τ |, exhibiting a small mode but a long tail, has a distinctively different
shape from those of |S̃| and |ω̃|. The other normalizing parameters, i.e. the r.m.s.
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values of strain-rate, vorticity, and SGS stress are σ|S̃| = 14.03 s−1, σ|ω̃| = 16.39 s−1,

and σ|τ | = 2.16× 10−3 m2 s−2, respectively.
To calculate the magnitude and orientation of eigenvectors of the filtered strain-

rate and SGS stress tensors, the measured tensors are diagonalized. Probability
density functions of the eigenvalues of τdij and S̃ij , are presented in figures 5(b) and
5(c), respectively. Here, αs, βs and γs are the most extensive, intermediate and most
contracting eigenvalues of S̃ij , respectively. Similarly, α−τ, β−τ and γ−τ are, respectively,
the most extensive, intermediate, and most contracting eigenvalues of the negative
SGS stress, −τdij . In the same order, they simultaneously correspond to the most

contracting, intermediate (with opposite sign) and most extensive eigenvalues of τdij ,
i.e. α−τ = −γτ, β−τ = −βτ and γ−τ = −ατ. In accordance with these definitions, we
also set αs, βs and γs to be, respectively, unit vectors aligned with the most extensive,
intermediate and most contracting eigenvectors of S̃ij , while α−τ, β−τ and γ−τ are
unit vectors aligned with the most contracting, intermediate and most extensive
eigenvectors of τdij . Figure 5(b) shows that β−τ is mostly negative and that the most
extensive stress (γ−τ) extends to higher magnitudes than the most contracting stress.
As is evident from figure 5(c), the most probable βs is positive but its value extends
to the positive and negative range. The most contracting strain-rate eigenvalue (γs)
extends to higher magnitudes than the most extensive strain.

3. Eigenvalue structures of filtered strain-rate and SGS stress tensors
The p.d.f.s shown in figures 5(b) and 5(c) do not fully characterize the joint distri-

butions of the three eigenvalues. Since they sum to zero, only two are independent.
Furthermore, a single parameter can be defined by proper normalization, as was
done for the strain-rate tensor by Lund & Rogers (1994). In analogy to s∗ (1.8), in
§ 3.1, we introduce a ‘stress state parameter’, s∗τ . Single and joint p.d.f.s of s∗ and s∗τ
are used to characterize the most probable states of the strain-rate and stress fields.
The eigenvalue structure of the nonlinear/similarity models is also examined and
compared to that of τdij . In § 3.2, we examine the effects of s∗ and s∗τ on the SGS
dissipation.

3.1. Probability density functions of s∗ and s∗τ
To characterize the structure of the SGS stress tensor we introduce a dimensionless
parameter, s∗τ , for the deviatoric stress τdij . Its definition is

s∗τ = −3
√

6ατβτγτ/(α
2
τ + β2

τ + γ2
τ )

3/2 = 3
√

6α−τβ−τγ−τ/(α2
−τ + β2

−τ + γ2
−τ)

3/2 = −s∗−τ.
(3.1)

By construction, α−τ > β−τ > γ−τ and α−τ + β−τ + γ−τ = 0. Thus, like s∗, s∗τ is within
the range ±1. The p.d.f.s of s∗ and s∗τ indicate the relative abundance of specific
states, i.e. specific ratios between magnitudes of the filtered strain-rate and SGS stress
eigenvalues, respectively. Moreover, in order to draw meaningful conclusions, we
demonstrate (see below) that the p.d.f.s of s∗ and s∗τ are not biased towards particular
states when tested using Gaussian random fields.

Figure 6 shows the p.d.f.s of s∗ and s∗τ . As suggested in Lund & Rogers (1994),
in calculating the p.d.f. of s∗, the dilatational error of the strain-rate tensor is
isotropically removed so that S̃ij remains trace-free. Also shown in figure 6 are
p.d.f.s computed from four randomly generated velocity fields, each containing 1283

vectors (each velocity component is chosen from a uniform distribution independently,
creating a white noise in space). The distributions of P (s∗) and P (s∗τ) computed
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Figure 5. Probability density function of (a) SGS dissipation, filtered vorticity, filtered strain-rate
and the deviatoric SGS stress magnitudes, (b) eigenvalues of the deviatoric SGS stress tensor, and
(c) eigenvalues of the strain-rate tensor.

using the random velocity field are essentially flat, although P (s∗τ) has a slightly
elevated probability towards −1. This negligible bias may be attributed to the fact
that the SGS stress is a quadratic functional of the velocities. Consistent with the
observations of Lund & Rogers (1994), the most probable strain state is at s∗ = 1,
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corresponding to an eigenvalue ratio of αs : βs : γs = 1 : 1 : −2. The associated local
flow structure is axisymmetric extension (more complete characterizations could be
achieved with joint p.d.f.s of two eigenvalues, but for now we restrict our attention
to characterization based on a single dimensionless parameter). The most probable
stress state, on the other hand, is at s∗τ = −1, corresponding to an eigenvalue
ratio of ατ : βτ : γτ = 2 : −1 : −1 (or α−τ : β−τ : γ−τ = 1 : 1 : −2). Thus,
the preferred state/structure of the stress tensor is also axisymmetric, but it is
axisymmetric contraction. Considering that in eddy-viscosity models the tensors have
opposite sign (see (1.4)) the inversion may not be surprising. However, the probability
of s∗τ = −1 is substantially higher than the probability of s∗ = 1. We will return to
this issue while presenting the joint p.d.f.s.

To evaluate how the similarity ((1.5), with the second filter at scale 2∆, following
Liu et al. 1994) and the nonlinear (1.6) models predict the preferred stress state,
p.d.f.s of s∗simτ and s∗nlτ computed from the modelled stress fields are plotted in figure 7.
Both models generate essentially the same p.d.f., consistent with the fact that the
nonlinear model can be interpreted as a first-order approximation of the similarity
model. Both also predict the high probability of s∗τ = −1, but they over-emphasize
the preferred stress state by a large margin. In fact, it seems that the models prescribe
the 2 : −1 : −1 ratio (for ατ : βτ : γτ) or values close to it to almost the entire field.

In an attempt to determine whether this trend is unique to our experimental data,
we repeat the analysis using DNS data of isotropic turbulence at Reλ ≈ 93 that is
available from Cerutti & Meneveau (1998). As shown in figure 7, the same trend
occurs. In both cases the nonlinear (or similarity) model ‘over predicts’ the frequency
of occurrence of the 2 : −1 : −1 state.

The joint p.d.f., P (s∗, s∗τ), presented in figure 8(a), shows the relationship between the
structures of the strain-rate and the stress tensors. The overall p.d.f. peak is located at
s∗ = 1 and s∗τ = −1. Thus, the combined most probable strain and stress structures are
axisymmetric extension in the strain-rate field and axisymmetric contraction in the
stress field. However, figure 8(a) also shows that s∗τ = −1 is the most likely stress state
for any value of s∗ and that s∗ = 1 is the most likely strain state for any s∗τ . Hence, a
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certain configuration of the filtered strain-rate eigenvalues does not imply a similar,
reciprocal configuration of the SGS stress eigenvalues. This trend is a contradiction
to eddy viscosity models, for which the joint p.d.f. would be concentrated along the
line s∗τ = −s∗, and is consistent with the poor local agreement between τdij and S̃ij
usually observed in a priori tests.

To compare the structure of the nonlinear/similarity stresses to that of τdij , figure 8(b)

shows the joint p.d.f. of P (s∗τ , s∗nlτ ). As before, the tensor is made traceless by subtracting
1
3
τnlkkδij . The distribution of P (s∗τ , s∗simτ ) is not shown since its behaviour is very similar

to the nonlinear model. Consequently, we will hereinafter focus on the nonlinear
model in evaluating the structure of ‘similarity type’ models. Compared to P (s∗, s∗τ),
P (s∗τ , s∗nlτ ) has a much higher (4.5 times higher) p.d.f. peak at s∗τ = −1 and s∗nlτ = −1.
Also, s∗nlτ tends to −1 much more likely than s∗τ to −1. Finally, for every value of
s∗τ , the most probable value of s∗nlτ is still −1 and, for every value of s∗nlτ , the most
probable s∗τ is −1. This trend indicates that the stress state of the nonlinear model is
also decoupled from that of the measured stresses, whereas a perfect (in an a priori
sense) model would have a peak along the s∗τ = s∗nlτ line.

In summary, the eigenvalue structures determined by eddy viscosity and similarity
models do not predict the structure (state) of the SGS stress tensor. However, they
both point to the correct most probable state. The eddy viscosity model underpredicts
the probability and the similarity model overprescribes it. Similar to the conclusions
in Liu et al. (1999), these opposing trends may further support a mixed model.

3.2. Relationships between SGS dissipation, s∗, s∗τ , and magnitudes of |S̃| and |ω̃|
In this section, we address how different flow and stress topologies (e.g. axisymmetric
extension or contraction) are related to different ranges of SGS dissipation (e.g. strong
forward or back scatter). These relationships are quantified using joint p.d.f.s of s∗ or
s∗τ and Π . Figure 9(a) is a contour map of P (s∗, Π/Πmean), the joint p.d.f. of s∗ and Π ,
and figure 9(b) is P (s∗τ , Π/Πmean) As is evident, regions of negative dissipation exist
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throughout the whole range of both s∗ and s∗τ , but the ‘positive’ tails are clearly much
larger. In both figures 9(a) and 9(b) and for all values of s∗ and s∗τ , the most probable
dissipation is slightly above zero. The range of dissipation levels widens with increasing
s∗ mostly on the positive side and only very slightly on the negative side. In the p.d.f. in-
volving s∗τ , the range of dissipation values expands with decreasing s∗τ both on the pos-
itive and negative sides, but still, the range of positive values increases at a faster rate.

Although the magnitudes of peaks differ, the trends in figures 9(a) and 9(b) in the
positive dissipation range are the same for s∗τ and s∗, but they differ in the negative
dissipation range. We conclude that, in regions of high dissipation, the axisymmetric
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extension configuration (s∗ = 1) is dominant. In regions of low positive dissipation
there is only a slight preference towards s∗ = 1, whereas in regions of high negative
dissipation there is no preferred strain state. In contrast to the latter trend, the most
probable stress state (s∗τ = −1) is prominent in regions of both high positive and high
negative dissipation.

Prediction of dissipation by the nonlinear model is an important issue, since overpre-
diction of negative dissipation (energy backscatter) may lead to undesirable numerical
instabilities. Figures 9(c) and 9(d ) present the joint p.d.f.s of the dissipation estimated
using the nonlinear model, i.e. Πnl = −τnlij S̃ij , with s∗ and with s∗τ , respectively. τnlij
is given by (1.6) with Cnl = 0.42 chosen from the data such that Πnl

mean = Πmean. A
comparison between figures 9(a) and 9(c) shows that even if the mean dissipation is
matched, the differences in the backscatter region when s∗ < 0 are substantial. In fact,
for s∗ < 0, the nonlinear model predicts that the p.d.f. peaks are in the negative dissipa-
tion range, and the mean dissipation rates are negative (whereas they remain positive
for Π of figure 9a). Although the most probable strain state is s∗ = 1, still s∗ < 0
occurs in more than 30% of the data volume, which means that unless it is corrected,
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the nonlinear model overprescribes backscatter in a significant fraction of the flow
field, especially in regions of axisymmetric contraction. A comparison between fig-
ures 9(b) and 9(d ) shows that the differences are quite small and the peaks are always
in the positive range of Πnl and Π . Clearly, trends (of Πnl and Π) with s∗ and with s∗τ
are quite different. As noted in § 1.1, the eddy-viscosity term in the mixed model (1.7)
is primarily used to increase the dissipation (the Smagorinsky dissipation is, by defi-
nition, always positive), and reduce the likelihood of excessive backscatter. However,
as will be shown in the Appendix, for regions with s∗ < 0, this remedy is insufficient.

Next, the effects of strain-rate and vorticity magnitudes are considered. Figure 10
presents joint p.d.f.s of Π with |S̃| and |ω̃|. With increasing strain-rate magnitude
the iso-probability lines expand both in the positive and negative directions but the
expansion rate is higher on the positive side. Thus, for each |S̃|/σ|S̃| there is a range
of dissipation levels that extends from negative to positive values. The insert in
figure 10(a) shows a log–log plot of the conditional mean dissipation as a function of
strain-rate magnitude (indicated by the solid line). It is evident that Π/Πmean increases
less rapidly than [|S̃|/σ|S̃|]3, as the Smagorinsky model would predict, but still, the

growth is monotonic. In contrast, predictions of the nonlinear model (Πnl vs. |S̃|)
show some notable differences (data not shown), especially in regions of high |S̃|,
where the model generates considerably higher dissipation in both the positive and
negative ranges.

The trends with vorticity (figure 10b) are different, notably in regions with low
|ω̃|/σ|ω̃|. A wide range of dissipation levels already exists and this range expands
quickly with increasing |ω̃|/σ|ω̃| both in the positive and negative sides (with higher
positive values). Unlike the trends with strain-rate, there is only a mild increase
of the most probable dissipation with increasing vorticity and it remains below
Π/Πmean ≈ 1.5. Thus, the magnitude of vorticity has a weak effect on the statistical
distribution of SGS dissipation. However, the joint p.d.f. of Πnl and |ω̃| (data not
shown) shows that the nonlinear model generates a higher level of negative dissipation
over a wide range of vorticity magnitudes.

Finally, in order to characterize the possible relationships between vorticity mag-
nitudes and the SGS stress and filtered strain-rate topologies, we present joint p.d.f.s
of |ω̃| with s∗ and s∗τ in figure 11. With decreasing s∗τ and increasing s∗, there is an
increasing probability of finding regions with high |ω̃|. Regions with low |ω̃| seem to
be uniformly distributed with small variations in p.d.f. of either s∗ or s∗τ . This trend
indicates that regions of high |ω̃| are well correlated with the preferred strain-rate
and stress states. A similar trend is also observed in joint p.d.f.s of |S̃| with s∗ and s∗τ
(data not shown).

4. Geometric alignment statistics of real and modelled stress tensors
This section starts with definitions of angles that are required for characterizing

the alignment of an orthogonal tensor in a coordinate system defined by another
orthogonal tensor. Then, we provide a detailed account of the relative alignments
between the filtered strain-rate, real and modelled (nonlinear) SGS stress tensors.

4.1. Joint p.d.f. of three angles to fully characterize relative alignment of two tensors

In our previous study (Tao et al. 2000), a two-dimensional joint p.d.f. has been
introduced to evaluate the orientation of a vector in a three-dimensional space spanned
by orthogonal tensor eigenvectors. As shown in figure 12, defining the orientation of
a vector (say α−τ) in the coordinate system spanned by αs, βs and γs requires two
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angles, for example θ(α−τ − αs) and φ(α−τ − βs). In order to present unbiased results,
we compute the joint p.d.f.s of cos θ and φ. With such variables, a randomly aligned
vector corresponds to a uniform p.d.f. In this analysis cos[θ(α−τ − αs)] = |α−τ · αs|,
whereas φ(α−τ − βs) is the angle between βs and the projection of α−τ on the (βs, γs)-
plane. This approach has enabled us to quantify the alignment probability of the
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vorticity vector relative to the strain-rate tensor (ω̃i is preferentially aligned with βs,
see § 5.4 for details) and the SGS stress tensor (ω̃i is preferentially perpendicular to
γ−τ).

However, a two-dimensional joint p.d.f. cannot uniquely characterize the relative
alignment between two tensors. To examine the alignment of the full tensor with
a single joint p.d.f. it is necessary to define a third angle that would still provide
an unbiased three-dimensional joint p.d.f. As before (figure 12), we use the angles
θ(α−τ − αs) and φ(α−τ − βs) to fully determine the orientation of α−τ. Consequently,
the orientation of the (β−τ, γ−τ)-plane is also determined, but not the directions of β−τ
or γ−τ on this plane. We then define an angle ζ(γ−τ − γPs ) to determine the direction
of γ−τ. It is the angle between γ−τ and γPs on the (β−τ, γ−s)-plane (i.e. normal to α−τ),
where γPs is the projection of γs on this plane. The three angles, θ, φ and ζ uniquely
define the orientation of all three stress eigenvectors (and as a result, τdij) in a space

defined by the eigenvectors of S̃ij . This choice of the third angle preserves the same
statistical consistency of our previous study, i.e. when tested against a random white
noise velocity field, these variables generate an essentially uniform joint p.d.f. (not
shown). Using simpler (i.e. more intuitive) angles, for instance θ(γ−τ − γs), together
with θ(α−τ − αs) and φ(α−τ − βs) leads to a biased (and thus not useful) joint p.d.f.
since the latter two angles constrain the range of values that θ(γ−τ − γs) can attain.

In the following sections, we use the three-dimensional joint p.d.f. in the form of
P {cos[θ(α−τ − αs)], φ(α−τ − βs), ζ(γ−τ − γPs )} to quantify the alignment trends of −τdij
relative to S̃ij . In certain illustrations, we use γs instead of αs as the basic direction.
In those cases the p.d.f. is in the form of P {cos[θ(γ−τ − γs)], φ(γ−τ − βs), ζ(α−τ − αPs )},
involving a set of angles that start with the alignment of γ−τ. Here, αPs is the
projection of αs onto the (β−τ, α−τ)-plane. Similarly, we use P {cos[θ(α−τ − αnl−τ)],
φ(α−τ − βnl−τ), ζ(γ−τ − γnl,P−τ )} to study the alignment of τdij in a coordinate system

defined by the eigenvectors of the nonlinear model, τnlij (instead of those of S̃ij).
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4.2. Alignment trends between S̃ij , τ
d
ij and τnlij

Figures 13(a) and 13(b) show the three-dimensional joint p.d.f. of relative alignment
between S̃ij and −τdij . The p.d.f. is computed by using 20 × 20 × 20 bins of equal
width for all three angle variables. For clarity, we present the alignment trends twice.
Figure 13(a) shows the alignment of α−τ better, whereas figure 13(b) illustrates the
alignment of γ−τ more clearly. From figure 13(b), it is evident that γ−τ is preferentially
aligned at 32◦ to γs (i.e. cos[θ(γ−τ − γs)] ≈ 0.85) irrespective of the other angles.
This trend is consistent with the results presented in Tao et al. (2000), but there the
analysis was based on only two instantaneous realizations and the angle of preferred
alignment was 34◦. From figure 13(a) it is evident that there are actually two distinctive
regions with high probability peaks. The first is located at cos[θ(α−τ− αs)] ≈ 0.85 (i.e.
θ(α−τ− αs) ≈ 32◦), φ(α−τ−βs) ≈ 90◦ and ζ(γ−τ− γPs ) ≈ 0◦. The second peak is located
at cos[θ(α−τ− αs)] ≈ 0 (i.e. θ(α−τ− αs) ≈ 90◦), φ(α−τ− βs) ≈ 0◦ and ζ(γ−τ− γPs ) ≈ 32◦.
The first peak has only a very slightly higher value than the second one (∼ 1.18
versus ∼ 1.14). These two peaks indicate two preferred three-dimensional alignments,
i.e. a bimodal behaviour. The alignments corresponding to the two p.d.f. peaks are
illustrated by the two inserts in figure 13(a). The first peak corresponds to the αβγ–
αβγ configuration. Here, β−τ is parallel to βs, whereas α−τ and γ−τ are located in
the (αs, γs)-plane, each forming an angle of about 32◦ with its corresponding filtered
strain-rate eigenvectors (i.e. α−τ with αs and γ−τ with γs). The second peak corresponds
to the αβγ–βαγ configuration. Here, α−τ and β−τ switch places, i.e. α−τ is now parallel
to βs, whereas β−τ replaces α−τ to form a 32◦ angle with αs. Still, confirming the results
in figure 13(b), γ−τ maintains the 32◦ angle with γs.

In obtaining such results, we speculate whether the observed trends are due to
a particular flow geometry of the present experimental facility. When the present
analysis is performed using the DNS data of Cerutti & Meneveau (1998), the strong
alignment trend of γ−τ and the bimodal behaviour of α−τ still exist, as shown in
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figure 14. Thus, the presently observed trends are not unique to the current flow
geometry. We will also show in § 5.4 that the bimodal behaviour of α−τ is related to
the magnitude of the vorticity (among other parameters). The configuration αβγ–βαγ
is much more pronounced in regions of high vorticity and the configuration αβγ–αβγ
becomes equally (or more) dominant in regions with intermediate levels of vorticity.
Evidently, both configurations are not consistent with eddy viscosity models where it
is assumed that the stress eigenvectors are aligned with the corresponding strain-rate
eigenvectors.
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Figure 14. Probability density function of alignment between eigenvectors of −τdij and S̃ij ,
evaluated from DNS results of isotropic turbulence at Reλ ≈ 93.

The alignment p.d.f. between the eigenvectors of τdij and τnlij is presented in fig-
ure 15. Here, the reference frame is defined by the eigenvectors of τnlij . The peak

of P {cos[θ(α−τ − αnl−τ)], φ(α−τ − βnl−τ), ζ(γ−τ − γnl,P−τ )} is centred at θ(α−τ − αnl−τ) ≈ 0◦,
φ(α−τ − βnl−τ) ≈ 0◦, and ζ(γ−τ − γnl,P−τ ) ≈ 0◦. This peak corresponds to a most probable

alignment that α−τ is parallel to αnl−τ, β−τ is parallel to βnl−τ, and γ−τ is parallel to γnl−τ.
The magnitude of the peak probability is also three times as much as the results
presented in figure 13. The nonlinear model evidently predicts the spatial orientations
of the SGS stress eigenvectors much better than the eddy viscosity models. This con-
clusion is consistent with earlier findings in a priori tests (see Meneveau & Katz 2000)
that were based on correlation coefficients (and were thus less easy to understand
geometrically).

However, the p.d.f. peak in figure 15 is fairly broad with different ranges for each
of the three angles. For θ(α−τ − αnl−τ) ≈ 0◦, it seems that φ(α−τ − βnl−τ) can have any
value between 0◦ and 90◦. To explain this result, note that when θ(α−τ−αnl−τ) ≈ 0◦, the

projection of α−τ on the βnl−τ − γnl−τ plane is very small, and as a result small changes

would generate a wide range of values for φ(α−τ − βnl−τ). Furthermore, as is evident

from figure 12, when φ(α−τ − βnl−τ) ≈ 0◦, γnl−τ is aligned with the intersection of the

two planes, and ζ(γ−τ − γnl,P−τ ) ≈ 0◦ implies that γ−τ is parallel to γnl−τ. Under these
conditions, the most likely θ(α−τ − αnl−τ) is 0◦, but the probability remains high for
a wide range of values of θ(α−τ − αnl−τ). This trend implies that there is a significant

likelihood of α−τ attaining any angle relative to βnl−τ in the (αnl−τ, β
nl
−τ)-plane.

The alignment between the eigenvectors of −τnlij and S̃ij , shown in figure 16, bears
remarkable resemblance to the stress–strain alignment of figure 13(a). Here again,
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Figure 15. Probability density function of alignment between eigenvectors of τnlij and τdij .

a clearly defined bimodal behaviour exists, but the preferred alignment angles are
around 42◦ instead of 32◦. The implications of this difference in preferred align-
ment are discussed in § 6.4. Furthermore, the probability peak values are extremely
high compared to those in figure 13(a), indicating an almost deterministic relative
alignment. For example, the peak value corresponding to cos[θ(αnl−τ − αs)] ≈ 0.74
(θ(αnl−τ − αs) ≈ 42◦), φ(αnl−τ − βs) ≈ 90◦ and ζ(γnl−τ − γPs ) ≈ 0◦ is around 8.3. This strong
orientation is not entirely surprising, considering that both τnlij and S̃ij are constructed
from common ingredients (elements of the filtered velocity gradient tensor).

5. Geometric alignment statistics conditioned on scalar flow parameters
Up to this point we have used all the data to investigate the relative alignment

of SGS stress eigenvectors in frames of reference defined by the filtered strain-
rate tensor and the eigenvectors of the nonlinear (similarity) model. In order to
understand some of the observed trends, we perform a series of conditional samplings
based on the magnitudes of SGS dissipation (§ 5.1), strain-rate (§ 5.2), stress and strain
state parameters (§ 5.3), as well as the vorticity (§ 5.4). As will be demonstrated, the
relative alignments are affected substantially by these parameters. While performing
these conditional samplings we only use fractions of the data set. In evaluating the
significance and/or impact of a specific condition, it is important to know what
percentage of the flow field satisfies that condition. These conditions and associated
data percentages are presented in table 1.
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Figure 16. Probability density function of alignment between eigenvectors of −τnlij and S̃ij .

Conditional sampling ranges and sample sizes
Variables
Π/Πmean −∞ → −1 −1→ 0 0→ 1 1→ 4 4→∞

2.8% 21.0% 45.2% 24.9% 6.1%
s∗ −1→ 0 0→ 0.6 0.6→ 0.9 0.9→ 1

32.4% 31.7% 25.0% 10.9%
s∗τ −1→ −0.95 −0.95→ −0.6 −0.6→ 0 0→ 1

10.6% 37.5% 28.4% 23.5%
|s̃|/σ|s̃| 0→ 2 2→ 4 4→∞

39.6% 53.3% 7.1%
|ω̃|/σ|ω̃| 0→ 1.5 1.5→ 4 4→∞

36.8% 59.3% 3.9%

Table 1. Selected conditions and percentages of the data set used in the conditional sampling. The
upper row indicates a condition (or range) and the lower row shows the percentage.

5.1. Conditional sampling based on SGS dissipation

Results of conditional sampling based on the value of SGS dissipation are presented
in figure 17. The bimodal behaviour that is observed while examining the entire data
set (§ 4.2) is still present in all the conditional p.d.f.s. However, both angles of peak
probability increase from about 28◦ when Π/Πmean > 4 (figure 17a) to 36◦ when
0 6 Π/Πmean < 1 (figure 17b) and to about 55◦ when Π/Πmean < −1 (figure 17c). The
magnitudes of the peaks in regions of both high positive and high negative dissipation
are much higher than those of the entire data, indicating stronger alignment trends.
In regions of low positive dissipation (figure 17b), the p.d.f. has broader peaks with
lower magnitudes, but not as low as the p.d.f. peaks of the entire dataset. For all
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cases, the illustrations of preferred alignment (figure 13a) still apply, but with different
angles, i.e. 28◦, 36◦ and 55◦ replacing the 32◦ for the conditions shown in figures 17(a)
to 17(c), respectively. These angular variations are to be expected since negative
SGS dissipation occurs when γ−τ approaches αs, and α−τ (or β−τ) approaches γs.
Finally, note that in regions of high negative dissipation, the peak corresponding to
φ(α−τ − βs) ≈ 0◦ is significantly higher than the peak at φ(α−τ − βs) ≈ 90◦. Thus,
the alignment of configuration αβγ–βαγ, with an angle of 55◦, is more dominant.
However, as table 1 shows, this condition is quite infrequent (2.8% of the time).

The effects of Π on the relative alignment between −τdij and τnlij are less complicated.
The strong alignment of γ−τ with γnl−τ and the clear but weaker alignment of α−τ with
αnl−τ persist in all the conditional p.d.f.s (results not shown). The peak values in regions
of high positive dissipation are much higher than those of the unconditional case.
These peaks are lower and less concentrated in lower dissipation ranges, but the
trends remain unchanged.

5.2. Conditional sampling based on strain-rate magnitude

Figure 18 shows the effect of |S̃| on the alignment trends of −τdij eigenvectors relative
to those of S̃ij . In regions of high |S̃| (figure 18a), the locations of the two peaks
at offset angles of 32◦ remain unchanged. However, the magnitudes of both peaks
increase substantially (from 1.2 to 2.9) and they appear to be more concentrated. In
regions of intermediate strain-rate (figure 18b) the peaks have a significantly broader
extent, and their magnitudes decrease to a level that is only slightly higher than
that of the entire data (compared to figure 13). Conversely, in regions of low |S̃|, as
shown in figure 18(c), the alignment trends are noticeably different. The preferred
alignments sketched in figure 14 no longer exist, and the probability peaks instead
shift to θ(α−τ − αs) ≈ 0◦. However, the peaks become very broad with fairly low
magnitudes. To recapitulate, in highly strained regions the most extensive and most
contracting SGS stresses (or intermediate stress when β−τ and α−τ switch places) are
‘forced’ to form an angle of 32◦ with the corresponding eigenvectors of the strain-rate.
As the strain-rate magnitude decreases the SGS stress eigenvectors shift towards their
respective strain-rate counterparts (as in eddy-viscosity), but the probability peaks
broaden and their magnitudes decrease.

Conditional sampling of the alignment relative to τnlij based on |S̃| does not show
substantial variations in trends. As a result, they are not shown. The strong alignment
of γ−τ with γnl−τ persists and so is the broader range for the alignment of α−τ with αnl−τ
(see figure 15). The only effect of decreasing |S̃| is a reduction in peak probability.
For example, the peak values for |S̃|/σ|S̃| > 4, 2 6 |S̃|/σ|S̃| < 4, and |S̃|/σ|S̃| < 2 are
10, 3.4 and 1.6, respectively. Thus, for all cases these peaks are considerably higher
than those with the S̃ij eigenvectors.

5.3. Conditional sampling based on s∗τ and s∗

The effects of the SGS stress state, characterized by s∗τ , on the alignment trends
are shown in figure 19. In regions of near axisymmetric contraction (−1 6 s∗τ <−0.95, figure 19a), the bimodal alignment is evident, with probability peaks that are
almost twice as high as those of the entire data. The preferred θ(α−τ − αs) when
φ(α−τ − βs) ≈ 90◦ is about 35◦, slightly greater than that of the entire dataset. The
preferred ζ(γ−τ− γPs ) (which for φ(α−τ− βs) ≈ 0◦ is also equal to θ(γ−τ− γs)) is about
37◦, also greater than the results in figure 13. As s∗τ increases, both θ(α−τ − αs) and
ζ(γ−τ − γPs ) at the points of maximum probability decrease. In the −0.95 6 s∗τ < −0.6
range (37.5% of the data), the most probable angles are θ(α−τ − αs) ≈ 35◦ and
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Figure 17. Conditional joint p.d.f.s based on SGS dissipation: (a) Π/Πmean > 4,
(b) 0 6 Π/Πmean < 1, (c) Π/Πmean < −1.
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Figure 18. Conditional joint p.d.f.s based on strain-rate magnitude:
(a) |S̃|/σ|S̃| > 4, (b) 2 6 |S̃|/σ|S̃| < 4, (c) |S̃|/σ|S̃| < 2.



62 B. Tao, J. Katz and C. Meneveau

0.01 0.53 1.04 1.55 2.07

1.0

0.8

0.6

0.2
0

0.410
20 30 40 50 60 70

80
90

0

80

60

40

20

φ(a–s–bs)

f(c–s–c s
P)

(a)

0.03 0.38 0.72 1.07 1.42

1.0

0.8

0.6

0.2
0

0.410
20 30 40 50 60 70

80
90

0

80

60

40

20

φ(a–s–bs)

f(c–s–c s
P)

(b)

0.06 0.28 0.50 0.71 0.93

1.0

0.8
0.6

0.2
0

0.410
20 30 40 50 60 70 80 90

0

80

60

40

20

φ(a–s–bs)

f(c–s–c s
P)

(c)

s*
s → –1

sd

s*
s → 1

sd

s*
s = 0

co
s[

h(
a –s

–a
s
)]

co
s[

h(
a –s

–a
s
)]

co
s[

h(
a –s

–a
s
)]

Figure 19. Conditional joint p.d.f.s based on s∗τ: (a) −1 6 s∗τ < −0.95, (b) −0.95 6 s∗τ < −0.6,
(c) s∗τ > 0. The illustrations in (a) and (c) demonstrate the configuration/structure of the stress
eigenvalues for the corresponding values of s∗τ .

ζ(γ−τ − γPs ) ≈ 32◦. The magnitudes of both p.d.f. peaks also decrease and the domain
connecting the two peaks has an increasingly higher probability. This trend continues
with increasing s∗τ , and the peaks become broader and extend with small variations
towards θ(α−τ − αs) ≈ 0◦. Especially when s∗τ > 0 (figure 19c), which accounts for
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Figure 20. Conditional joint p.d.f.s based on s∗: (a) 0.9 6 s∗ 6 1, (b) s∗ < 0. The illustrations show
the structure of the filtered strain-rate eigenvectors for the corresponding values of s∗ (The same
illustration of (b) also appears in figure 27b.)

23.5% of the data, there is a clear shift in the location of the peak to θ(α−τ−αs) ≈ 0◦,
and the peak magnitude also decreases. The second peak essentially disappears and
the preferred value of ζ(γ−τ − γPs ), even though within a fairly broad range, also
decreases to zero. Thus, there is a clear trend of shifting alignment as s∗τ changes.

Unlike the substantial changes in alignment that occur with varying s∗τ , varying
s∗ seems to have less impact on the preferred orientation of τdij . Consequently, only
two samples of extreme conditions are presented in figures 20(a) and 20(b). The
probability peaks remain small, varying between 1.03 and 1.45 as s∗ increases from
negative values to the high positive range and the bimodal trend persists for all values
of s∗. The preferred orientation corresponding to φ(α−τ − βs) ≈ 90◦ (configuration
αβγ–αβγ) remains θ(α−τ − αs) ≈ 32◦. The preferred angle of the second probability
peak, i.e. at φ(α−τ − βs) ≈ 0◦ (corresponding to configuration αβγ–βαγ) increases
as s∗ decreases. When 0.9 6 s∗ 6 1, it is ζ(γ−τ − γPs ) ≈ 25◦ but the peak is broad
and extends almost to 40◦. Conversely, in regions of negative s∗, as illustrated in
figure 20(b), the trend is reversed and the peak at φ(α−τ − βs) = 90◦ becomes clearly
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dominant. Of all the conditional samplings, s∗ < 0 is the most obvious case where the
peak corresponding to configuration αβγ–αβγ remains and the second peak almost
disappears (there are cases where they both disappear). Clearly, and consistent with
the discussions in § 3.1, the difference in trends between s∗τ and s∗ indicate again that
they are decoupled.

The effect of s∗τ on the relative alignment between the eigenvectors of τdij and τnlij is
even less significant (data not shown). The preferred alignment remains unchanged
and quite similar to the result shown in figure 15. However, the magnitude of the
probability peak decreases with increasing s∗τ . Conditional sampling based on s∗ of
the alignment relative to τnlij (not shown) also does not show significant differences in
trends, except for a decrease in peak probability when s∗ is negative.

5.4. Filtered vorticity vector: its alignment and effects on SGS stress alignments

5.4.1. Alignment trends of filtered vorticity vector

As noted in § 1.2, previous numerical and experimental studies and our own results
indicate that the vorticity is preferentially aligned with the intermediate S̃ij eigenvector
(βs). In Tao et al. (2000), we also show (using only two instantaneous distributions)
that ω̃i is preferentially located in a plane perpendicular to the most extensive
eigenvector of τdij(γ−τ). The analysis is repeated using nine vector maps and the results
are presented in figures 21 and 22. Each plot is a two-dimensional joint p.d.f. showing
the preferred alignment of the vorticity vector. Figure 21(a) shows the alignment in
a frame of reference defined by the eigenvectors of S̃ij , and figures 21(b) and 22(a–c)
display the alignments in the eigenframe of −τdij .

The preferred alignment of ω̃i with βs is evident in figure 21(a). Conditional
sampling based on |S̃|, Π and |ω̃| does not change this trend (results not shown), but
the peak probability at the same angle increases with increasing magnitude of any
of these parameters. Conditional sampling based on the magnitude of s∗τ (also not
shown) does not affect the preferred angle, but the peak probability decreases slightly
with increasing s∗τ . The only parameter that has some effect on the alignment of ω̃i
relative to the S̃ij eigenvectors is s∗. In regions of s∗ → 1, αs and βs have comparable
magnitudes and therefore they cannot be distinguished from each other. As a result
the iso-probability lines at cos[θ(ω − γs)]→ 0 become more and more parallel to the
φ axis (data not shown). Thus, as s∗ → 1, ω̃i is equally likely to be aligned anywhere
in the (αs, βs)-plane. Finally, since βs can be either positive or negative (see figure 5c),
it is also of interest to examine whether the p.d.f. changes owing to stretching or
contraction. Although the location of the peak does not change, the probability does.
In regions with stretching (βs > 0) the p.d.f. peaks (not shown) are considerably
higher than those in regions with contraction. βs < 0 also causes another interesting
effect – it substantially reduces the likelihood that the vorticity is aligned with αs.

In the SGS stress reference frame (figure 21b), the vorticity is preferentially aligned
with α−τ. However, the probability gradients with varying φ(ω− β−τ) are quite small,
i.e. a considerable fraction of the vorticity is aligned at other angles in the (α−τ, β−τ)-
plane. The results also indicate that ω̃i is preferentially perpendicular to γ−τ. In Tao
et al. 2000, where the results are based on only two instantaneous distributions, we
have also concluded that ω̃i is perpendicular to γ−τ, but the preferred alignment
with α−τ compared to that with β−τ is weak (peaks of 1.04 and 0.95 at α−τ and β−τ,
respectively). As we have obtained more data, the p.d.f. peaks have shifted to the
present values, 1.2 and 0.85, respectively.

Conditional sampling based on Π or |S̃| (not shown) does not change the preferred
alignment angles. With increasing Π or |S̃|, the probability peak shifts further towards
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Figure 21. Joint p.d.f. of relative alignment between ω̃ and eigenvectors of (a) S̃ij , (b) −τdij .

cos[θ(ω−γ−τ)] = 0 and the bias towards α−τ compared to β−τ remains, but to a lesser
extent. Conditional sampling based on the magnitude of s∗ (not shown) affects only
the magnitude of peaks. Conditional sampling based on s∗τ shows significant changes
only for −1 6 s∗τ < −0.95, when the SGS stresses are essentially axisymmetric and
the difference between α−τ and β−τ diminishes. Consequently, ω̃i can be aligned with
almost the same probability at any angle in the (α−τ, β−τ)-plane. For higher values of
s∗τ the p.d.f.s are quite similar to figure 21(b) with only a small decrease in the peak
probability as s∗τ increases.

Substantial changes in alignment occur when the data are conditionally sampled
based on |ω̃|, as shown in figure 22. In regions of high |ω̃| (figure 22a) the vorticity
is strongly aligned with α−τ. When the p.d.f. is further conditioned on βs > 0 (relying
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Figure 22. Conditional p.d.f.s of alignment between ω̃ and eigenvectors of −τdij , based on the

vorticity magnitude: (a) |ω̃|/σ|ω̃| > 4, (b) 1.5 6 |ω̃|/σ|ω̃| < 4, (c) |ω̃|/σ|ω̃| < 1.5.

on the fact that ω̃i is aligned with βs), the probability peak increases slightly (to
4.3) and when conditioned on βs < 0 it decreases (to 2.8). In regions of intermedi-
ate vorticity (figure 22b), the magnitude of the peak at α−τ is considerably reduced,
whereas the probability of being parallel to β−τ(φ(ω − β−τ) = 0◦) remains at almost
the same level. Vortex stretching (βs > 0) increases this peak at φ(ω − β−τ) = 90◦
slightly (to 1.4) and compression (βs < 0) decreases it (to 1.3). In regions of low
vorticity (figure 22c), the entire p.d.f. becomes increasingly uniform with only a slight
preference to the (α−τ, β−τ)-plane. Clearly, with increasing magnitude, the vorticity
is much more likely to be aligned with the most contracting stress eigenvector. As
will be shown shortly, this trend also affects the relative alignment between −τdij
and S̃ij .

5.4.2. Effects of filtered vorticity on SGS stress alignment trends

The joint p.d.f. of three angles characterizing τdij alignments are recomputed using
conditional sampling based on three ranges of vorticity magnitude. In regions of
high vorticity (|ω̃|/σ|ω̃| > 4), as shown in figure 23(a), there is a clear preference
for one particular alignment configuration, θ(α−τ − αs) ≈ 90◦, φ(α−τ − βs) ≈ 0◦,
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ζ(γ−τ − γPs ) ≈ 38◦. This p.d.f. peak corresponds to the αβγ–βαγ configuration with
α−τ aligned with β−τ, except that the angles between γ−τ and γs as well as between
β−τ and αs are now about 38◦. When these high-vorticity regions are further divided
to cases with positive and negative values of βs (not shown), the trends differ. When
βs > 0, the peak at φ(α−τ − βs) ≈ 0◦ increases (to 3.9) and the second peak becomes
more ‘faded’. When βs < 0, the peak at φ(α−τ−βs) ≈ 0◦ decreases (to 3.0) and shrinks
to a smaller size (θ(α−τ − αs) < 10◦), whereas the second peak becomes more distinct.
These results and the fact that in regions with high |ω̃|, the vorticity is strongly
aligned with βs and with α−τ, seem to indicate that the most contracting stress is
preferentially aligned to oppose the stretching (by βs) of strong vortices. Of all the
conditional samplings of the τdij–S̃ij alignment, this is the only case where the αβγ–βαγ
configuration is clearly dominant (excluding regions with high negative dissipation,
where the angles are different).

In regions of intermediate vorticity, the bimodal behaviour returns with much lower
probability peaks (figure 23b). The second preferred configuration, αβγ–αβγ, now has
a slightly higher peak and both angles decrease to 32◦. When this intermediate
vorticity range is further divided to cases with positive and negative intermediate
strain-rate (not shown), for βs > 0 the peak at φ(α−τ − βs) ≈ 0◦ increases slightly
and becomes larger than the peak at φ(α−τ − βs) ≈ 90◦ that decreases slightly. When
βs < 0 the peak at φ(α−τ − βs) ≈ 0◦ essentially disappears and the magnitude of the
second peak also decreases (to 1.29). These trends lend further support to our claim
that in regions where the vorticity is stretched by the intermediate strain, the most
contracting stress eigenvector is preferentially aligned to oppose the vortex stretching.
A plausible explanation for this trend is provided in § 6.4.

In regions with low vorticity (figure 23c), both p.d.f. peaks disappear, and the
preferred alignment, with low and broad probability peaks, shifts to θ(α−τ − αs) ≈ 0◦.
Thus, the trends at low vorticity are essentially the same as those at low strain-rate
magnitude. To illustrate that these results are not only characteristic to the present
geometry, we repeat the conditional sampling using the isotropic turbulence data of
Cerutti & Meneveau (1998). Similar trends are observed for the case of |ω̃|/σ|ω̃| > 4
(data not shown).

Like all the other parameters, the effect of |ω̃| on the alignment of τdij with τnlij is
much less significant (data not shown). The preferred alignment remains unchanged
and similar to figure 15. However, the magnitude of the probability peak increases
rapidly with increasing |ω̃|. For example, for |ω̃|/σ|ω̃| > 4, 1.5 6 |ω̃|/σ|ω̃| < 4, and
|ω̃|/ < 1.5, the peak values are 11.5, 3.7 and 1.3, respectively.

6. Discussion
After presenting a summary of the results in § 6.1, in § 6.2 we discuss the extent

to which the results can be considered general characteristics of turbulent flows.
The direct relationship between SGS dissipation and the strain–stress alignment is
discussed in § 6.3. In § 6.4, some of the observed alignments are explained using
dynamical and kinematical arguments. Finally, in § 6.5, we discuss the implications
of the similarity between the τdij − S̃ij and τnlij − S̃ij alignment trends, and provide
a motivation for development of improved SGS models. An Appendix provides
additional results concerning the p.d.f. and conditional p.d.f.s of real and modelled
SGS dissipation in order to demonstrate weaknesses and strengths in present SGS
stress models.
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Figure 23. Conditional p.d.f.s of alignment between eigenvectors of S̃ij and −τdij , based on the

vorticity magnitude: (a) |ω̃|/σ|ω̃| > 4, (b) 1.5 6 |ω̃|/σ|ω̃| < 4, (c) |ω̃|/σ|ω̃| < 1.5.
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6.1. Summary of results

Briefly, the main findings of this paper are:
(i) The most extensive SGS stress eigenvector is preferentially aligned at 32◦ to the

most contracting strain-rate eigenvector. This angle increases slightly (almost to 38◦)
with increasing magnitudes of filtered strain-rate and vorticity. In regions of low |S̃ |
and |ω̃| the angle decreases to 0◦, the p.d.f. peaks become very broad and decrease in
magnitude.

(ii) The most contracting SGS stress eigenvector has a bimodal behaviour identified
as configurations αβγ–αβγ (α−τ is at 32◦ to αs) and αβγ–βαγ (β−τ is at 32◦ to αs). α−τ is
preferentially aligned with ω̃i and parallel to βs (αβγ–βαγ configuration) in regions of
high |ω̃|. This preference becomes stronger when βs > 0. Since ω̃i is also preferentially
aligned with βs (especially when βs > 0) and with α−τ, these trends indicate when
the vorticity is stretched by the intermediate strain-rate, the most contracting stress is
preferentially aligned to oppose the motion that causes vortex stretching. In almost
all the conditional samplings, both the most extensive and most contracting stress
eigenvectors are not aligned with their corresponding eigenvectors of the filtered
strain-rate, in contradiction to the fundamental assumption of eddy viscosity based
models.

(iii) The measured stress eigenvectors are preferentially aligned at the same direc-
tion as those of the nonlinear (similarity) model. This orientation does not change
with the magnitudes of strain, vorticity, s∗τ and s∗. However, the p.d.f. peaks become
lower and wider in regions of low |S̃|, low |ω̃|, s∗τ > 0 and s∗ < 0. This lack of
sensitivity to varying conditions is an advantage of the nonlinear model over eddy
viscosity based models. Stresses computed using the nonlinear model also have a
bimodal behaviour, but the preferred angles are 42◦ instead of the measured 32◦.

(iv) In agreement with the DNS results of Lund & Rogers (1994), the most probable
strain state is axisymmetric extension (s∗ = 1). In addition, the most probable SGS
stress state corresponds to axisymmetric contraction (s∗τ = −1), and the probability
of s∗τ = −1 is significantly higher than the probability of s∗ = 1. The nonlinear
model overestimates the probability of the preferred stress state. Joint p.d.f.s of s∗τ
and s∗ show that the strain and stress states are mostly decoupled. The likelihood
of high positive dissipation increases in regions of axisymmetric extension and in
regions of axisymmetric contracting SGS stress. On the other hand, high negative
SGS dissipation occurs more frequently in regions of axisymmetric contracting SGS
stress, but remains independent of the strain-rate topology. Analysis of relationships
between the nonlinear model dissipation and the strain-rate and stress topologies
shows significant differences compared to the real dissipation especially in regions
with negative s∗ (towards axisymmetric contracting velocity field).

6.2. Impact of inhomogeneity and mean flow conditions

It is important to point out that trends discussed in this paper may be facility,
flow or Reynolds-number dependent. However, as we have already demonstrated,
the dominant phenomena, such as the stress–strain alignments and the relationships
between s∗τ and s∗nlτ , are also observed in analysis using DNS data of isotropic
turbulence (at lower Re). Another important issue concerns spatial inhomogeneity. In
our analysis, we have averaged over the entire data set, i.e. over the entire wake region.
To test for inhomogeneity, the data are divided into three parts: the ‘inner section’ is
roughly the central 15×15 mm2, the ‘midsection’ consists of a ∼ 15 mm wide band that
surrounds the inner section, and the ‘outer section’ is the outer ∼ 15 mm wide band
that surrounds the midsection. Based on measured velocity (mean and r.m.s. values
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of fluctuations) presented, for example, in Melling & Whitelaw (1976), Eggeles et al.
(1994) and Zhang et al. (1997), and consistent with our present data, the inner section
has almost a uniform axial flow and almost ‘isotropic’ r.m.s. velocity fluctuations (see
spectra in figure 4). The mean shear and anisotropy increase in the mid and outer
sections. We have recomputed the joint p.d.f.s of figure 13 for each section separately.
The results (not shown) demonstrate that the preferred alignments are essentially
the same for the three sections, in spite of difference in the mean and fluctuating
flow characteristics. The effects of filter size and type are other important questions.
Based on previous results (Liu et al. 1994) we speculate that results for the Gaussian
filter would be quite similar to present results for the box filter. However, owing
to the spatially non-compact extent of the Gaussian and (especially) the spectral
cutoff filters which interfere with the dataset’s boundaries, we have not performed
analyses using these filters. Limited analyses using larger filter sizes (e.g. 2∆) did not
show any important differences from results presented in this paper. These trends are
strong indications that present results are not unique to our specific flow conditions
and filter parameters. Nevertheless, to address fully the question of universality, the
measurements and analysis should be repeated in several fundamentally different flow
conditions, especially flows with high mean shear or rapidly strained turbulence. For
the latter, for example, two-dimensional PIV data (Liu et al. 1999) shows that rapid
straining causes substantial changes to the relationships between stresses and velocity
gradients.

6.3. Relationships between stress–strain alignments and SGS dissipation

By its definition, Π = −τdij S̃ij , the SGS dissipation is strongly affected by how well
each of the eigenvectors of τdij are aligned with those of S̃ij . In order to identify
which of the eigenvector alignments has the strongest effect in determining Π , we
analyse the data and determine the SGS dissipation conditioned on the angles between
respective eigenvectors. Distributions of the measured dissipation as a function of
cos[θ(γ−τ − γs)], cos[θ(β−τ − βs)] and cos[θ(α−τ − αs)] are plotted in figure 24(a).
Although the dissipation increases with decreasing angle for all three cases, in two
of them, θ(α−τ − αs) and θ(β−τ − βs), Π remains positive and the changes are much
smaller than those occurring as θ(γ−τ − γs) varies. The dissipation becomes negative
when θ(γ−τ − γs) > 56◦.

Next, we develop simple expressions that allow us to understand better the rela-
tionship between preferred τdij − S̃ij alignment and Π . For the preferred alignment
configuration αβγ–αβγ, we have

Παβγ–αβγ = −τ :S |αβγ–αβγ = (α−ταs + γ−τγs) cos2 θ+ (α−τγs + γ−ταs) sin2 θ+ β−τβs. (6.1)

Using β−τ = −(γ−τ + α−τ) and βs = −(γs + αs), we obtain

Παβγ–αβγ = (α−ταs + γ−τγs)(1 + cos2 θ) + (α−τγs + γ−ταs)(1 + sin2 θ). (6.2)

For the most probable strain and stress states γ−τ = −2α−τ, γs = −2αs, and as a result

Παβγ–αβγ/(α−ταs) = 3
2
(1 + 3 cos 2θ). (6.3)

This expression becomes negative at θ > cos(− 1
3
)/2 ≈ 55◦, very close to the observed

crossover value for θ(γ−τ− γs). These results indicate that the angle between the most
contracting stress and most extensive strain has a dominant effect on the magnitude
of dissipation.

In order to verify this statement, figure 24(b) shows the contribution of individual
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Figure 24. Mean SGS dissipation conditioned on the alignment angles between the eigenvectors
of S̃ij and −τdij: (a) overall dissipation rate, Π , (b) individual contributions to Π by the three

eigenvectors of −τdij .

stress components to the total dissipation. For example, the contribution of γ−τ is

Πγ−τ = γ−τγs cos2[θ(γ−τ − γs)] + γ−τβs cos2[θ(γ−τ − βs)] + γ−ταs cos2[θ(γ−τ − αs)]. (6.4)

The results show a slight shift in the angle of transition between positive and negative
dissipation, from 56◦ to 61◦, in the Πγ−τ distribution conditioned on θ(γ−τ − γs). A
comparison between figures 24(a) and 24(b) shows that although γ−τ is the dominant
contributor to the overall dissipation, the contribution of the other two eigenvectors is
not negligible. Unlike the distribution of Π as a function of θ(α−τ− αs), Πα−τ becomes
slightly negative but very close to zero at large θ(α−τ − αs). The distribution of Πβ−τ
is flat with very low positive values.

There are two reasons for the dominance of the terms involving γ−τ. First, as the



72 B. Tao, J. Katz and C. Meneveau

p.d.f.s in figure 5 and the distributions of s∗τ and s∗ (figure 6) show, γ−τ and γs are
larger than the other eigenvalues. Secondly, as the alignment p.d.f.s demonstrate,
the preferred orientation of γ−τ relative to S̃ij eigenvectors is consistent, does not
have a bimodal behaviour and is less sensitive to varying parameters. Note also
that the alignment of γ−τ can be estimated quite well using the nonlinear model (cf.
figure 15), i.e. it is known during simulations. Consequently, figure 24 provides a
tool to estimate the conditions under which the turbulence is prone to generation of
negative dissipation.

6.4. Dynamical and kinematical mechanisms underlying observed geometrical
orientations

The data show a consistent relative alignment between γ−τ and γs, and a bimodal
behaviour of the alignment between the other two eigenvectors. The αβγ–βαγ con-
figuration is much more pronounced in regions of high vorticity and the αβγ–αβγ
configuration becomes equally (or more) dominant in regions with intermediate levels
of vorticity. We also find that some of these trends appear to be almost deterministic
for the τnlij − S̃ij alignment (figure 16).

In this section, we discuss possible dynamical and kinematical mechanisms that
may help understand these observations. A plausible dynamical origin of the preferred
αβγ–βαγ alignment at high vorticity is the following: as a large-scale vortex filament
oriented in the βs direction (the most likely alignment of vorticity) is stretched,
it becomes thinner and the velocity in directions perpendicular to the vortex axis
increases. Owing to the decrease in size, some of this increased motion is transferred
into the subgrid-scale range. This process increases the SGS stress normal components
in the (αs, γs)-plane, but has little effect in the βs direction. Since the eigenvectors are
evaluated for the deviatoric part of the stress, an increase in the magnitude of only
two components reduces the deviatoric part of the third component, i.e. the normal
stress component in the βs direction decreases. Thus, stretching of a large-scale
vortex decreases the SGS stress element that is aligned with this vortex. When this
vortex is powerful, this stress component is more likely to become the smallest (most
contracting) stress. Consequently, the α−τ eigenvector is more likely to be aligned with
ω̃i or βs in regions of high |ω̃|.

Next, we discuss kinematical relationships that may explain some of the almost
deterministic alignments between τnlij and S̃ij observed in § 4.2. The analysis is based

on the measured preferred strain state and vorticity alignment. Expressing S̃ij and ω̃i
in the eigenframe of S̃ij , we obtain:

S̃ij = αsαsαs + βsβsβs + γsγsγs, (6.5)

ω̃i = ωααs + ωββs + ωγγs. (6.6)

From the observations that ω̃i is preferentially aligned with βs (§ 5.4.1), and that the
most probable strain state is axisymmetric extension (§ 3.1), we assume:

ωα ≈ ωγ ≈ 0, ωβ 6= 0, (6.7)

αs ≈ βs ≈ − 1
2
γs. (6.8)

Then, the filtered velocity gradient tensor becomes

A = ∇ũ = S̃ + Ω̃ = − 1
2
γs

 1 0 −r
0 1 0
r 0 −2

 , (6.9)
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where r = ωβ/γs. The resulting deviatoric part of the nonlinear stress is

τnlij /(Cnl∆
2) = AkiAkj − 1

3
tr(AkiAkj) = 1

4
γ2
s Tij , (6.10)

where

T =

 1
3
r2 − 1 0 3r

0 −(1 + 2
3
r2) 0

3r 0 (2 + 1
3
r2)

 ← αs
← βs← γs

. (6.11)

T can be diagonalized to

D =

 1
3
r2 + 1

2
(1 + 3

√
1 + 4r2) 0 0

0 −(1 + 2
3
r2) 0

0 0 1
3
r2 + 1

2
(1− 3

√
1 + 4r2)

← βs. (6.12)

Note that the transformation from Tij to Dij involves tensor rotation around the

βs-axis. For |r| < √6, 1
2

+ 1
3
r2 − 3

2

√
1 + 4r2 is the most negative eigenvalue of Tij , and

thus the most positive eigenvalue of −τnlij is αnl−τ = −Cnl∆2γ2
s (

1
2

+ 1
3
r2− 3

2

√
1 + 4r2)/4. It

follows that βnl−τ = Cnl∆
2γ2
s (1 + 2

3
r2)/4 remains the intermediate one. Considering that

Tij or τnlij is expressed in the eigenframe of S̃ij , this alignment between eigenvectors

of −τnlij and S̃ij resembles the αβγ–αβγ configuration in figure 13(a). Conversely, for

|r| > √6, −(1 + 2
3
r2) becomes the most negative eigenvalue of Tij , namely αnl−τ and βnl−τ

are switched. The resulting τnlij − S̃ij alignment resembles the αβγ–βαγ configuration.

In both cases, the angle between γnl−τ and γs or between αnl−τ and αs in the (αs, γs)-plane
is:

θ(γnl−τ − γs) = cos−1

{[
2 +

1

2r2
(1−

√
1 + 4r2)

]−1/2
}
. (6.13)

This angle varies depending on the parameter r. A first estimate of r can be given
in terms of the r.m.s. values, i.e. r ≈ (〈ω2

β〉/〈γ2
s 〉)1/2. Using the isotropic turbulence

relation 〈ω̃2〉 ≈ 2〈s̃ij s̃ij〉 (Tennekes & Lumley 1972), and using 〈s̃ij s̃ij〉 = 〈α2
s + β2

s + γ2
s 〉

and (6.7) and (6.8), we obtain r ≈ √3, and θ(γnl−τ − γs) ≈ 36.9◦ from (6.13). Note that

since this result is for |r| < √6, this angle applies only to the αβγ–αβγ alignment.
If r ≈ (〈ω2

β〉/〈γ2
s 〉)1/2 is directly evaluated from the present data, we obtain r ≈ 1.81

and θ(γnl−τ − γs) ≈ 37.3◦, i.e. in excellent agreement with the estimated value based on
isotropy. For large values of r (high |ω̃| and/or low |S̃ | regions), (6.13) shows that
θ(γnl−τ − γs) → 45◦, not significantly different from the 42◦ alignment angle shown in
figure 16.

6.5. Implications and open issues

The kinematic reasoning presented in the preceding section was successful in explain-
ing several trends of the τnlij − S̃ij alignment. In order to explore the implications
on the alignment trends of the real SGS stress, we recall that the SGS stress can
be decomposed into three distinct terms (Leonard 1974, but we use the Galilean
invariant formulation of Germano 1986):

τdij =Lij + Cij +Rij , (6.14)

where Cij is the so-called cross-stress, Rij is the subgrid Reynolds stress, and Lij =˜̃uiũj− ˜̃ui ˜̃uj is the Galilean-invariant Leonard stress. Its Taylor series approximation is

L∗ij = 1
12

∆2 ∂ũi

∂xk

∂ũj

∂xk
. (6.15)
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Figure 25. Joint p.d.f. of relative alignment between the residue stress, −ψdij , and S̃ij . Here, αr−τ and

γr−τ are the most contracting and most extensive eigenvectors of ψdij , respectively.

Equation (6.15) has the same form as the nonlinear model (1.6) except for the
prefactor. Recognizing the apparent similarity between the τdij − S̃ij and τnlij − S̃ij
alignments (figure 13a vs. figure 16), we may suspect that some of the non-trivial
alignment trends (e.g. the bimodal behaviour) of the stress is due to the contribution
of the resolved scales through the Leonard stress. To examine the impact of L∗ij on the
alignment trends we can subtract L∗ij from τdij and observe the alignment of the residue
stress, ψdij = τdij − L∗dij , relative to S̃ij . In the present analysis, L∗ij is approximated by
the filtered velocity gradients using the coarse grid, whereas the expression leading
to (6.15) assumes that derivatives can be evaluated on a fine grid. Tests using the
data show that setting the coefficient equal to 0.125 instead of 1

12
in (6.15) minimizes

the mean square error between Lij and L∗ij . Note that this coefficient is significantly
smaller than the value of about 1

3
for the nonlinear model which was quoted in

Meneveau & Katz (1999a).
Indeed, as illustrated in figure 25, ψdij does not have the bimodal behaviour, and

the preferred alignment shifts to θ(αr−τ − αs) ≈ 0◦ and ζ(γr−τ − γPs ) < 20◦, i.e. a trend
consistent with an eddy viscosity model for the remainder. Hence, we can conclude
that a mixed model which adds L∗dij to the eddy viscosity term is supported by our
results on alignment trends when considering non-conditioned p.d.f.s. Preliminary,
more detailed, analysis that is to be described in a future publication reveals that
problems still remain with such a mixed model formulation. For instance, conditional
sampling shows that the bimodal peaks reappear in regions of high |S̃|, high |ω̃|,
and high Π . Furthermore, the 0.125 coefficient used here does not reproduce the
magnitude of the stresses, whereas the earlier value close to 1

3
did much better in

that respect. Moreover, as shown in the Appendix, with this modified coefficient for
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Figure 26. Probability density function of the SGS dissipation rate, evaluated from the experimental
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the nonlinear model part, the distribution of Π shows important differences from the
real p.d.f.s, and also with conditional p.d.f.s in selected parts of the flow (e.g. high |S̃|,
high |ω̃|, etc.). These results, along with the fact that the preferred alignment angles of
the nonlinear and real stress with S̃ij are different (32◦ versus 42◦), imply that simple
subtraction of L∗ij does not fully account for the bimodal alignment behaviour or SGS
dissipation trends. Finally, we point out that even if the alignments were reproduced
exactly by a model (which is unlikely), different eigenvectors might require different
coefficients of proportionality. For instance, the differences in the s∗ and s∗τ p.d.f.s
in § 3.1 indicate that such additional modifications may be required. These aspects
should be investigated further.

We thank P. Dimotakis for an interesting discussion about three-dimensional align-
ments in turbulence. This work has been funded by the Office of Naval Research
(grant N00014-98-1-0221, Drs P. Purtell and C. Wark, program managers), and in
part by the National Science Foundation (L. Clark, program manager).

Appendix. Implications for SGS dissipation predicted by nonlinear and
mixed models

In this Appendix we examine the distribution of SGS dissipation as predicted by the
nonlinear and mixed models and comment on the effects of various flow parameters.

Figure 26 shows the comparison between the p.d.f. of the real SGS dissipation and
those obtained from the nonlinear and mixed models. As is evident, the nonlinear
model generates a larger number of points with high negative dissipation. The use
of a mixed model (1.7) is to stabilize the nonlinear model by adding a dissipative
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Smagorinsky term. For the mixed model, we show results for two values of Cnl . The
first is Cnl = 0.33 for the nonlinear model and Cs = 0.09 for the Smagorinsky term.
These values are very similar to those suggested in Meneveau & Katz (1999b), which
reproduce the mean dissipation correctly, and also the predicted stress magnitudes are
close to those of the real SGS stress. The second choice is Cnl = 0.125 and Cs = 0.16.
These values are motivated by our results on alignments of the residue stress ψdij ,
and Cs is adjusted to produce the correct Πmean. Figure 26 shows that the p.d.f. of
the mixed model for the Cnl = 0.33 case improves the prediction in the backscatter
range, whereas the Cnl = 0.125 case is too dissipative, which predicts significantly
fewer occurrences of backscatter. This behaviour also exists in various conditional
dissipation p.d.f.s.

The agreement between the mixed model (Cnl = 0.33) and real SGS dissipation is
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not uniformly valid in all regions of the flow. For example, conditional sampling based
on strain-rate magnitude, as illustrated in figure 27(a), shows that in regions with
high strain-rate, all three models predict excessive occurrences of positive dissipation.
Conditional sampling based on s∗ also leads to substantial discrepancies, especially
in regions when s∗ < 0 (figure 27b). Here, both the nonlinear model and the mixed
model (Cnl = 0.33) are strongly skewed toward the negative side, consistent with the
differences between the joint p.d.f.s shown in figures 9(a) and 9(c). Considering that
s∗ < 0 occurs in 32.4% of the sample volume, the results in figure 27(b) should raise
serious concerns. Similar discrepancies occur as a result of conditional samplings
based on other parameters.

In summary, taking all the data as a whole, the dissipation p.d.f. of the mixed
model (with Cnl = 0.33) seems to agree with that of the real dissipation. However, in
regions with high |S̃|, it is too dissipative, whereas in regions with negative s∗, it still
produces significantly more negative dissipation. Knowledge of where the corrections
are needed may guide the development of improved models.
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